Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha [published erratum appears in J Exp Med 1996 Mar 1;183(3):1283]
نویسندگان
چکیده
Several cytokines, especially granulocyte/macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor alpha (TNF-alpha), have been identified that foster the development of dendritic cells from blood and bone marrow precursors in suspension cultures. These precursors are reported to be infrequent or to yield small numbers of dendritic cells in colony-forming assays. Here we readily identify dendritic cell colony-forming units (CFU-DC) that give rise to pure dendritic cell colonies. Human CD34+ bone marrow progenitors were expanded in semi-solid cultures with serum-replete medium containing c-kit-ligand, GM-CSF, and TNF-alpha. The addition of TNF-alpha to GM-CSF did not alter the number of typical GM colonies but did generate pure dendritic cell colonies that accounted for approximately 40% of the total colony growth. When the two distinct types of colonies were plucked from methylcellulose and tested for T cell-stimulatory activity in the mixed leukocyte reaction, the potency of colony-derived dendritic cells exceeded that of CFU-GM progeny from the same cultures by at least 1.5-2 logs. Immunophenotyping and cytochemical staining of the CFU-DC-derived progeny was also characteristic of dendritic cells. Other myeloid cells were not identified in these colonies. The addition of c-kit-ligand to GM-CSF- and TNF-alpha-supplemented suspensions of CD34+ bone marrow cells expanded CFU-DCs almost 100-fold by 14 d. We conclude that normal human CD34+ bone marrow cells include substantial numbers of clonogenic progenitors, distinct from CFU-GMs, that can give rise to pure dendritic cell colonies. These CFU-DCs can be expanded for several weeks by in vitro culture with c-kit-ligand, and their differentiation requires exogenous TNF-alpha in addition to GM-CSF. We speculate that this dendritic cell-committed pathway may in the steady state contribute cells to the epidermis and afferent lymph, where dendritic cells are the principal myeloid cell type, and may increase the numbers of these specialized antigen-presenting cells during T cell-mediated immune responses.
منابع مشابه
Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-colony-forming unit intermediate.
CD34+ precursors in normal human bone marrow (BM) generate large numbers of dendritic cells alongside macrophages and granulocytic precursors when cultured for 12 to 14 days in c-kit ligand, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha). This study reports an intermediate cell type that develops by day 6, and has the potential to differen...
متن کاملThe FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro.
The present studies investigated the effects of the recently cloned flt3 ligand (FL) on the in vitro growth and differentiation of primitive and committed subsets of human CD34+ bone marrow (BM) progenitor cells. FL alone was a weak growth stimulator of CD34+ BM cells, but synergistically and directly enhanced colony formation in combination with interleukin (IL) 3, granulocyte colony-stimulati...
متن کاملRAPID COMMUNICATION Dendritic Cells and Macrophages Can Mature Independently From a Human Bone Marrow
CD34' precursors in normal human bone marrow (BM) generate large numbers of dendritic cells alongside macrophages and granulocytic precursors when cultured for 12 to 14 days in c-kit ligand, granulocyte-macrophage colonystimulating factor (GM-CSF), and tumor necrosis factor-a (TNF-a). This study reports an intermediate cell type that develops by day 6, and has the potential to differentiate int...
متن کاملCharacterization of dendritic cell differentiation pathways from cord blood CD34(+)CD7(+)CD45RA(+) hematopoietic progenitor cells.
To better characterize human dendritic cells (DCs) that originate from lymphoid progenitors, the authors examined the DC differentiation pathways from a novel CD7(+)CD45RA(+) progenitor population found among cord blood CD34(+) cells. Unlike CD7(-)CD45RA(+) and CD7(+)CD45RA(-) progenitors, this population displayed high natural killer (NK) cell differentiation capacity when cultured with stem c...
متن کاملRapid and efficient generation of lentivirally gene-modified dendritic cells from DC progenitors with bone marrow stromal cells.
Since dendritic cells (DC) play pivotal roles in both innate and adaptive immunity, DC can be a good target for immuno-gene therapy. However, the optimal generation method for gene-modified DC has not yet been well exploited. CD34+ cells from cord blood (CB), bone marrow (BM), or peripheral blood (PB) were expanded in a medium containing stem cell factor (SCF), flt 3 ligand (Flt3L) and thrombop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 182 شماره
صفحات -
تاریخ انتشار 1995